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MESOMECHANICS OF MATERIAL STRENGTHENING

BY NANODISPERSE INCLUSIONS

UDC 69.4, 539.376, 539.4.015V. E. Panin, E. E. Deryugin, and S. N. Kul’kov

By simultaneously using approaches of mesomechanics and nonequilibrium thermodynamics, it is shown
that any nanoinclusions, including those with a low elastic modulus, and nanopores cause material
strengthening.

Key words: mesomechanics, nonequilibrium thermodynamics, stress concentration, nanosize in-
clusions, nanopores, grain boundary, gradients of elastic constants.

INTRODUCTION

The loading curve of materials with inclusions is influenced by various factors. It is expected that the
qualitative and quantitative characteristics of stress–strain curves depend not only on the type of particles but also
on their sizes.

Initiation and motion of deformation defects at any scale level are due primarily to local structural transfor-
mations in regions of increased stress concentration [1]. It is therefore very important to characterize any inclusion
in a deformable solid body by the spatial distribution of the stress field produced by this inclusion.

In the present paper, a possible strengthening mechanism for materials containing nanosize inclusions with
elastic moduli smaller than that of their surrounding matrix is analyzed using a multilevel approach based on
the physical mesomechanics of materials. For materials of the type considered, the internal stress fields around
nanoinclusions are calculated using the relaxation element method [2] and the thermodynamic foundations of the
theory of strengthening of materials with nanosize inclusions having low elastic moduli, including materials with
nanopores, are considered.

1. STRESS FIELD IN A MATRIX WITH A NANOSIZE INCLUSION

1.1. Analytical Formulas for the Stress Field in a Plate with an Inclusion. Below, we give the
results of two-dimensional calculations of the stress fields in an elastic matrix with a round inclusion in tension
under plane stress conditions using the relaxation element method [2]. It is assumed that the elastic characteristics
of the matrix and inclusion materials are different: E1 and ν1 are the Young modulus and Poisson ratio of the
matrix, respectively, and E2 and ν2 are the Young modulus and Poisson ratio of the inclusion, respectively. The
tension stress σ is directed along the y cartesian axis with origin at the center of the inclusion.

To solve this problem, it is necessary to determine the boundary conditions on the inclusion contour. The
loading diagram is presented in Fig. 1a.
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Fig. 1. Boundary conditions represented as a superposition of the stress fields: (a) stress field in the
plate with an inclusion; (b) homogeneous biaxial stress field; (c) stress field under biaxial loading
provided that the stresses in the local region of round shape are equal to zero.
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Fig. 2. Biaxial loading of the plate (a) represented as a superposition of two uniaxial loads along
the y axe (b) and x axe (c).

It has been shown [3, 4] that in an elliptic inclusion symmetric about the tension axis, the stress field is
homogeneous with the zero component σxy. Hence, this field is also homogeneous in the case of an inclusion of
round shape. The field in the inclusion will be characterized by the components

σ0
y = kyσ, σ0

x = kxσ, (1)

where the coefficients ky and kx are to be determined.
Let us use the superposition principle which is valid in the approximation of linear elastic theory. According

to this principle, the total solution of the boundary-value linear problem of elasticity can be represented as a
superposition of simpler solutions provided that the resulting boundary conditions remain former. Figure 1 shows a
combination of two simple solutions which do not disturb the initial boundary conditions. One of these solutions is
the homogeneous stress field (1) (see Fig. 1b), which defines a homogeneous elastic-strain field with the components

εy = (ky − ν1kx)σ/E1, εx = (kx − ν1ky)σ/E1, εxy = 0. (2)

The second solution is the solution in the case of a plate subjected to biaxial external loading (see Fig. 1c) provided
that the stress in the inclusion is equal to zero. This solution, in turn, can be represented as a superposition of
two solutions for uniaxial load that satisfy the boundary conditions specified in Fig. 1c (Fig. 2). In the case of
uniaxial loading of a plate with a circular region without normal and tangential stress on its boundary, the solution
is the well-known Kirsch solution [5–8]. Using this solution, one can find the inhomogeneous stress field σ∗ outside
the circular contour for the case of tension stress σ(1 − ky) (Fig. 2b). The stress field σ∗∗ for the case of external
compression stress σkx (Fig. 2c) is similarly determined. Superposition of the obtained solutions, together with the
homogeneous field (1), defines the stress field outside the inclusion with the components
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It is obvious that inside the inclusion, the following stress distribution is valid:

σy/σ = ky, σx/σ = kx, σxy/σ = 0.

Displacements of an arbitrary point (x0, y0) on the boundary of the inclusion subject to the boundary
conditions in Fig. 2b and c are given by the equations

u∗
y(x0, y0) = 3(1 − ky)y0σ/E1, u∗

x(x0, y0) = −(1 − ky)x0σ/E1,

u∗∗
y (x0, y0) = kxy0σ/E1, u∗∗

x (x0, y0) = −3kxx0σ/E1.
(4)

The components of the additional displacements u0
y and u0

x of this point (x0, y0) due to the homogeneous
stress field (1) are determined by the homogeneous strain field (2):

u0
y(x0, y0) = y0(ky − kxν1)σ/E1, u0

x(x0, y0) = x0(kx − kyν1)σ/E1. (5)

The displacement of an arbitrary point (x0, y0) on the boundary of the inclusion is determined by summation
of the corresponding components in Eqs. (4) and (5):

ux(x0, y0) = u0
x(x0, y0) + u∗

x(x0, y0) + u∗∗
x (x0, y0),

uy(x0, y0) = u0
y(x0, y0) + u∗

y(x0, y0) + u∗∗
y (x0, y0).

(6)

It is easy to show that condition (6) is satisfied for a homogeneous strain field with the components

εx = −[1 + 2kx − ky(1 − ν1)]σ/E1, εy = [3 − 2ky + kx(1 − ν1)]σ/E1, εxy = 0, (7)

where ky, kx are unknown coefficients.
At the same time, the homogeneous stress field (1) in the inclusion (see Fig. 1b ) corresponds to homogeneous

deformation which can be expressed in terms of the elastic characteristics of the inclusion:

εx = (kx − kyν2)σ/E2, εy = (ky − kxν2)σ/E2, εxy = 0. (8)

Equating the corresponding components in expressions (7) and (8), we obtain a system of two equations
with two unknowns ky and kx which can be written as

ky(E1 + 2E2) − kx[ν2E1 + (1 − ν1)E2] = 3E2, kx(E1 + 2E2) − ky[ν2E1 + (1 − ν1)E2] = −E2.

The solution of this system gives the values of the coefficients ky and kx:

ky =
E2[(3 − ν2)E1 + (5 + ν1)E2]

(E1 + 2E2)2 − [ν2E1 + (1 − ν1)E2]2
, kx =

E2[(3ν2 − 1)E1 + (1 − 3ν1)E2]
(E1 + 2E2)2 − [ν2E1 + (1 − ν1)E2]2

. (9)

The obtained equations (3) and (9) coincide with the equations in [9] found by selection of certain stress
functions, which confirms the validity of these equations.

Plastic deformation occurs under shear stress relaxation conditions. In a matrix without inclusions under
external stress σ, any point is exposed the maximum shear stress τ0 = 0.5σ at an angle of 45◦ to the tension axis.
Simple transformations of expressions (3) outside the inclusion yield the following distribution of the shear stress
τ = (σy − σx)/2 at an angle of 45◦ to the tension axis:

τ =
1
2

σ +
(1 − ky + kx)R2σ

2r2

(
1 − 8

x2y2

r4

)(3R2

r2
− 2

)
+

(1 − ky − kx)R2σ

2r2

(
1 − 2y2

r2

)
. (10)

In the inclusion, τ = (ky − kx)/2.
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Fig. 3. Distributions of the shear stress τ at an angle 45◦ to the tension axis: (a) hard inclusion
(τmax/σ = 0.709 and τmin/σ = 0.122); (b) soft inclusion (τmax/σ = 0.67 and τmin/σ = 0.38).

Figure 3 gives shear stress distributions in the presence of hard and soft inclusions.
In a hard inclusion (titanium carbide with E2 = 382 GPa, ν2 = 0.3 in iron with E1 = 190 GPa and ν1 =

0.28 [10]) a homogeneous field of the shear stress τ = 0.683σ is observed whose value far exceeds the homogeneous
field of the shear stress τ0 = 0.5σ in the iron matrix without inclusions. In this case, near the inclusion boundary
in the matrix there are four maxima τmax = 0.709σ. In addition, there are two regions with increased shear stress,
in which the maximum stress is τmax = 0.643σ. In addition, near the inclusion boundary in the matrix there are
two minima τmin = 0.122σ, which are far smaller than the values of τ0.

A different pattern is observed in the case of a soft inclusion in a harder matrix (for example, copper sulfide
CuS in iron). The minimum stress τmin = 0.384σ is observed in the inclusion. Near the inclusion boundary there
are two maxima τmax = 0.67σ. The stress distribution outside the soft inclusion is qualitatively similar to the stress
distribution in a matrix with a circular cut [8].

The analysis performed above shows that in all the cases considered, the large inclusion acts as a stress
macroconcentrator. The jump in the elastic constants on the inclusion boundary is responsible for softening of the
material. The stress concentration will be even greater if the particle has an irregular (asymmetric) shape [11].

1.2. Stress Field in a Matrix with Nanosize Particles. The nanosize elements of the structure
have indistinct boundaries (transition region whose width is comparable to the size of the particle itself) [12–15].
Therefore, in calculations of the stress field in a matrix with a nanosize particle, it is necessary to take into account
the gradients of the elastic constants across the nanoparticle–matrix interface. The present paper gives the results
of calculations taking into account a smooth change (in the transition region) in the elastic moduli from their values
in the matrix to the values in the nanoparticle. Zeroth elastic constants in the nanoparticle correspond to the case
of a material with nanopores.

Let h be the width of the transition region in which the Young modulus decreases from the value E1 in the
matrix to the value E2 in the nanoparticle. In the transition region, a gradient of the elastic moduli is observed. We
assume that, generally, the Young modulus in the transition region has an S-shaped shape profile (Fig. 4), which
provides smooth transition from the value E1 in the matrix to the value E2 in the nanoparticle.

The smooth change in the Young modulus in the transition region is given by the formula

E(r) = (1 − g/h)E1(r) + (g/h)E2(r); (11)

E1(r) = E1 + (E2 − E1)
(
1 − R − g − r

h − g

)β+1

, R − h � r � R − g; (12)

E2(r) = E1 + (E2 − E1)
(R − r

g

)β+1

, R − g � r � R, (13)
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Fig. 4. Diagram of half of the nanoinclusion (a) and Young modulus profile (b) in the radial section
of the soft nanoinclusion: 1) matrix; 2) transition region; 3) nanoinclusion.

a b

Fig. 5. Distribution of the Young modulus in hard nanoparticle (a) and soft nanoparticle (b).

where R is the nanoparticle radius (taking into account the width of the boundary), R − g is the distance from
the center of the nanoparticle to the site in the transition region at which the maximum gradient of the Young
modulus is observed; the exponent β determines the gradient of the Young modulus in the transition region: the
larger the β, the larger the maximum gradient of the Young modulus. In the limiting case (β → ∞), a jump in the
Young modulus is observed on the inclusion boundary. In this case, the size of the inclusion is determined by the
quantity R − g.

Figure 5 shows distributions of the Young modulus calculated by formula (11) for the two cases: a hard
nanoparticle of titanium carbide TiC (E2 = 484 GPa [10]) and a soft nanoparticle copper sulfide CuS in iron
(E1 = 195 GPa [10]) for β = 1, h = 0.8R, and g = 0.5h. It was assumed that the Young modulus of the CuS
nanoparticle did not exceed the value for annealed copper (E2 = 110 GPa [10]). Figure 6 shows Young modulus
profiles in the radial section of the nanoparticle for h = R. It is evident that the Young modulus distribution
according to formulas (11)–(13) does not have jumps during transition from the matrix to the nanoparticle.
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Fig. 6. Young modulus profiles in the radial section of hard nanoparticle (a) and soft nanoparticle (b)
for g = 0.5h and and different values of β in Eqs. (12) and (13): β = 1 (1), 2 (2), 3 (3), 4 (4),
5 (5), 6 (6), 7 (7), 8 (8), 9 (9), 10 (10), and ∞ (11): (a) E1 = 70 GPa and E2 = 382 GPa;
(b) E1 = 195 GPa and E2 = 110 GPa.
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dE

Fig. 7. Fragment of the smooth Young modulus profile E (a) and the site of this profile represented
as elementary jumps dE (b) in the transition region.

It is convenient to represent Eqs. (12) and (13) as a function of the variables t′ and t′′ [t′ = (R−g−r)/(h−g)
in the interval R− h � r � R− g and t′′ = (R− r)/g in the interval R− g � r � R]. Then, these equations can be
written as

E1(t′) = E1 + (E2 − E1)(1 − t′)β+1, E2(t′′) = E1 + (E2 − E1)(t′′)β+1. (14)

Poisson ratios are determined similarly in the corresponding intervals:

ν1(t′) = ν1 + (ν2 − ν1)(1 − t′)β+1, ν2(t′′) = ν1 + (ν2 − ν1)(t′′)β+1. (15)

To calculate the stress state of a matrix with nanoinclusions (taking into account gradients of the elastic
moduli in the transition region), we represent the continuous change in the moduli in the transition region (Fig. 7a)
as a set of infinitesimal jumps (Fig. 7b).

The elementary jumps of the Young modulus (Fig. 7b) and Poisson ratio are given by the first derivatives of
expressions (14) and (15) with respect to the corresponding variables. In the interval R− h � r � R− g, we obtain

dE′ = (β + 1)(E2 − E1)(1 − t′)β dt′, dν′ = (β + 1)(ν2 − ν1)(1 − t′)β dt′.
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In the interval R − g � r � R, the corresponding elementary jumps of the Young modulus are given by

dE′′ = (β + 1)(E2 − E1)(t′′)β dt′′, dν′′ = (β + 1)(ν2 − ν1)(t′′)β dt′′.

The variables t′ and t′′ in the corresponding transition regions vary from 0 to 1 in the direction to the center of the
nanoparticle.

Each elementary jump of the elastic moduli determines the elementary field of shear stresses, which, according
to expression (10), can be represented as

dτ =
R(t)2

2r2

(
1 − 8

x2y2

r4

)(3R(t)2

r2
− 2

)
dk1 +

R(t)2

2r2

(
1 − 2y2

r2

)
dk2. (16)

In this expression, the coefficients dk1 and dk2 and the radius of the circular contour on which there is an elementary
jump of the elastic moduli R(t) are functions of the variable t′ in the interval R−h � r � R− g and the variable t′′

in the interval R − g � r � R. The corresponding calculations give the following equations for dk1 and dk2:
— in the interval R − h � r � R − g,

dk′
1 =

(β + 1)(1 − t′)β [E1(1 + ν2) − E2(1 + ν1)]
4[E1 + (E2 − E1)(1 − t′)β ]

dt′,

dk′
2 =

(β + 1)(1 − t′)β [E1(1 − ν2) − E2(1 − ν1)]
2[E1 + (E2 − E1)(1 − t′)β ]

dt′;

— in the interval R − g � r � R,

dk′′
1 =

(β + 1)(t′′)β [E1(1 + ν2) − E2(1 + ν1)]
4[E1 + (E2 − E1)(t′′)β ]

dt′′,

dk′′
2 =

(β + 1)(t′′)β [E1(1 − ν2) − E2(1 − ν1)]
2[E1 + (E2 − E1)(1 − t′′)β ]

dt′′.

Substitution of these values into Eq. (16) and integration in the corresponding limits lead to the following shear-stress
distribution in the volume:

τ(r, β) = τ1(r, β)(1 − g/h) + τ2(r, β)(g/h).

In the interval R − h � r, the function τ1(r, β) has the form

τ1(r, β) = A1(r) + 0.5[1 − B1(r)] +
1 − B1(r)
4(β + 1)−1

[E1(1 + ν2) − E2(1 + ν1)
2r2

(
1 − 8

x2y2

r4

)

×
1∫

B1(r)

{3[R − g − t(h − g)]2 − 2r2}[R − g − t(h − g)]2

r2{E1 + (E2 − E1)[1 − (1 − t)β+1]}(1 − t)−β
dt

+
E1(1 − ν2) − E2(1 − ν1)

r2

(
1 − 2y2

r2

) 1∫

B1(r)

[R − g − t(h − g)]2(1 − t)β

E1 + (E2 − E1)[1 − (1 − t)β+1]
dt

]
.

Here B1(r) = (R − g − r)/(h − g) and A1(r) = B1(r)(ky − kx)/2 at R − h � r � R − g; B1(r) = A1(r) = 0 at
r � R − g. In the interval r � R − h, we have τ2(r, β) = (ky − kx)/2, where ky and kx are given by Eqs. (9).

In the interval R − g � r, the function τ2(r, β) has the form

τ2(r, β) = A2(r)+0.5[1−B2(r)]+
1 − B2(r)
4(β + 1)−1

[E1(1 + ν2) − E2(1 + ν1)
2r2

(
1−8

x2y2

r4

) 1∫

B2(r)

[3(R − tg)2 − 2r2](R − tg)2

r2[E1 + (E2 − E1)tβ+1]t−β
dt

+
E1(1 − ν2) − E2(1 − ν1)

r2

(
1 − 2y2

r2

) 1∫

B2(r)

(R − tg)2tβ

E1 + (E2 − E1)tβ+1
dt

]
,
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Fig. 8. Variation in the shear stress distribution around a CuS soft inclusion (a, c, and e) and
a TiC hard inclusion (b, d, and f) in an iron matrix with decreasing radius of the inclusion:
R > 10 μm (a and b), 33 nm (c), 20 nm (d), and 10 nm (e and f).

where B2(r) = (R − r)/g and A2(r) = B2(r)(ky − kx)/2 at R − g � r � R; B2(r) = A2(r) = 0 at r � R. In the
interval r � R − g, we have τ2(r, β) = (ky − kx)/2, where ky and kx are given by Eqs. (9).

The calculations show that the stress concentration around the inclusion decreases with decreasing size of
the inclusion relative to the width of the transition region. Figure 8 shows the variation in the field of the maximum
spall stress τ as the radius of the soft inclusion decreases from 10 μm to 10 nm. It is evident that large inclusion
acts as a strong stress concentrator whereas near the boundary of the nanoinclusions, the stress concentration is
insignificant.

The change in the Young modulus in transition from the matrix to the inclusion is due to the continuous
change in the bulk-centered cubic crystal structure of iron to the face-centered cubic crystal structure of CuS
(E2 = 110 GPa) in the transition region. In other words, the width of the transition region is the effective length
scale at which the Young modulus gradient takes place. The Poisson ratio changes similarly in the transition from
the iron matrix to the CuS inclusion. The width of the transition region was assumed to be independent of the size
of the inclusion.

A comparison of the distributions of the stress τ for a soft inclusion (Fig. 8a, c, and e) and a hard inclusion
(Fig. 8b, d , and f) shows that they differ qualitatively. However, in the case of a TiC hard inclusion (E2 = 484 GPa
[9]) in an iron matrix, the stress concentration around the inclusion decreases with decreasing size of the inclusion.
In both cases, the distribution pattern changes qualitatively when the influence of the inclusion boundary extends
to a distance exceeding half of the inclusion radius.
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Fig. 10. Gibbs thermodynamic potential F versus molar volume v: A is the region of hydrostatic
compression, B is the region of mesostructures of various scale levels, B1 and C are the regions of
nanosize structures, D is the region of transition of the material to the porous state and fracture;
and I is the region corresponding to the strongly nonequilibrium transition state.

Figure 9 gives the shear stress concentration coefficient k versus radius R for hard and soft inclusions. It is
evident that in the range of large sizes of the hard and soft inclusions, the stress concentration gradients are similar,
whereas in the range of nanosizes, they differ significantly: gradk is 2.5 times larger for the hard inclusion than for
the soft inclusion. A dislocation should bend around a hard nanoinclusion according the Orovan model [16], whereas
the soft nanoinclusion is cut through by the dislocation. Below, we show that in the case of soft nanoinclusions,
strengthening rather than softening of the material occurs.

2. NONEQUILIBRIUM THERMODYNAMICS OF MATERIAL STRENGTHENING
BY INTRODUCING SOFT NANOINCLUSIONS AND NANOPORES

Figure 10 shows a curve of the Gibbs thermodynamic potential F versus molar volume v. For the critical
values of the molar volume vi (i = 1, 2, . . . , 6), the thermodynamic potential F (vi) has local minima corresponding
to the local nonequilibrium potentials in the zones of hydrostatic tension of various scales. The critical values of vi

correspond to the following states in the deformable solid body: v0 is the equilibrium crystal, v1 are the regions of
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Fig. 11. Dislocation motion: (a) interaction of a dislocation with a disperse inclusion according to
the Orovan model [approach of a dislocation to a high-strength inclusion (curve 1), formation of a
dislocation loop near an inclusion (curve 2)]; (b) passage of a dislocation through a nanoinclusion
with a small elastic modulus.

stress microconcentrators in which dislocation nuclei occur, v2 and v3 are the regions of stress mesoconcentrators
and macroconcentrators in which local structural-phase transitions occur with the formation of mesozones and
macrozones of localized plastic deformation, respectively, and v4 is the state corresponding to the intersection of
the curve of F (v) with the abscissa [with a further increase in the local molar volume, the change in the Gibbs
thermodynamic potential occurs under the conditions F (v) > 0; in this case, the system becomes unstable: various
types of fracture occur in the material]; for v > v4, two phases coexist: an atom-vacancy phase (at v = v5) and
local vacuum (at v � v6) in the form of micropores, defects, and discontinuities.

From Fig. 10, it follows that all local minima of the curve of F (v) have common conodes with the main
minimum of the equilibrium thermodynamic potential for v = v0. This implies that a deformable solid with
localized plastic flow should always have an undeformed equilibrium medium, in which all types of deformation
defects, including unstable atom-vacancy phases, can coexist.

A similar thermodynamic representation of the regions of the curve of F (v) in Fig. 10 makes it possible to
put them in correspondence to the following strain and fracture regions of the loaded solid: v−1–v1 is the region
of elastic compression-tension of the equilibrium crystal; v1–v4 is the region of plastic strain of the solid without
destruction of the imperfect material and without the possibility of its return to the equilibrium state (for example,
during annealing); v4–v6 is the region of discontinuities of various scale (micropores, defects) in which viscous
flow and material sublimation in the solid state are possible; v < v−1 is the region corresponding to hydrostatic
compression and characterized by incompressibility of the solid.

According to [1], in a dislocation nucleus in an equilibrium crystal there are a molar volume minimum
v1 > v0 and a local minimum of F (v1). The smallest minimum F (v0) corresponds to a thermodynamically stable
crystal with ideal translation invariance. Nanostructural states in a nanoinclusion are characterized by near-zero
values of F (v) (region I in Fig. 10). Region I corresponds to a strongly nonequilibrium transition state in which
nanocrystals with a molar volume v4 are surrounded by a structurally-indistinct shell with molar volume v = v5.
A dislocation will bend around a nanoparticle with a large elastic modulus, resulting in strengthening according to
the Orovan model (Fig. 11a). However, material strengthening can also be caused by passage of a dislocation through
a soft nanoparticle. When a dislocation passes through a nanoparticle with a small elastic modulus (Fig. 11b), the
dislocation nucleus is split over the entire volume of the nanoinclusion, resulting in a significant decrease in its
nonequilibrium relative to the state of the material of the soft nanoparticles and transition to a metastable state.
To eliminate the blocking that arises in this case, the dislocation needs the additional stress [17]

τ = (γm − γn)/b + (τf,m + τf,n)/2 + (τ∗
m + τ∗

n )/2.

Here τ∗
m and τ∗

n is the short-range order fracture stress in the metal of the matrix and nanoinclusion, respectively;
γm and γn are the energies of the packing defect, and τf,m and τf,n are the friction force of partial dislocations; b is
the Burgers vector.

If a dislocation passes through a nanopore, a distinct threshold arises in the latter which slows the dislocation
motion, leading to material strengthening. However, significant strengthening can be achieved only in nanostructural
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Fig. 12. Distribution of the submicropore size dsm versus grain size d (a) and strain diagram (b)
during compression of ZrO2 ceramics: nonporous material (1) and s = 2 (2), 15 (3), and 26% (4).

materials in which high concentration of nanopores is possible. From Fig. 10, it follows that nanopores can be in
equilibrium only with nanocrystals. In the present work, this conclusion was confirmed for nanostructural ceramics
in which microcracks develop.

3. STRENGTHENING BY NANOPORES

It is known that the stress concentration near a cut in a solid is influenced by only two geometrical parameters:
the length of the cut in a direction perpendicular to the tension axis and the minimum radius of curvature at the
end of the cut along this direction [18]. A large pore in a solid acts a strong stress concentrator since it has an
irregular geometrical shape with local curvature radii much smaller than the size of the pore. Materials with high
porosity contain a large number of large pores promoting strong softening. Brittle materials, for example, porous
ceramics have especially low strength properties [19].

A nanopore is an inclusion with curvature radius commensurable with the size of the nanopore, i.e., its
shape is nearly spherical. Stress concentration in a low-porosity material does not play a determining role in its
deformation softening. Of significance for material softening is the fact that, in the nanosize range, the boundary of
the structural element is indistinct. A nanopore is an inclusion whose Young modulus is equal to zero. Therefore,
the reduction in stress concentration should occur more rapidly with decreasing pore size than with decreasing
Young modulus.

At the same time, in brittle ceramics, the life and ultimate strength are determined by the initiation and
distribution of microcracks rather than by dislocation mechanisms. The strengthening role of nanopores in ceramics
is that nanopores effectively impede the propagation and development of microcracks. This conclusion is supported
by experiments on dioxide zirconium ceramics. Measurements by scanning electron photomicrographs show that the
mean size of submicropores decreases in proportion to an increase in the grain size in ceramics and ranges from 50
to 80 nm (Fig. 12a).

Figure 12b shows typical strain curves obtained during active compression of samples of nonporous mate-
rial and ceramics with various volumes of pore space. Nonporous ceramics is deformed elastically to the value
σ = 1000 MPa and undergoes brittle fracture at a strain of ε � 0.2% (curve 1). The strain diagrams of ceramics
with nanopores (ε < 10%) are almost linear (curve 2). The slight deviation from a linear law at the top of the
diagram is apparently due to the tetragonal-monoclinic phase transition under the action of stresses in the frontal
region of the main crack characteristic of partially stabilized dioxide zirconium. A comparison of curves 1 and 2
shows that the presence of nanopores leads to a significant increase in the ultimate strength of the material (to a
value σ = 1700 MPa) and to an order of magnitude increase in the strain margin before fracture (ε = 2%).
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Fig. 13. Loading curves of ZrO2 ceramics in double logarithmic coordinates for s = 10 (1), 15 (2),
23 (3), 29 (4), and 60% (5).

Increasing the volume fraction of porosity increases the variance of the pore size distribution. Both large
and small pores are formed. A sharp decrease in the ultimate strength of the material is observed. The loading
curves become more complex: the diagrams have regions of elastic deformation and failure of stress (curves 3 and 4
in Fig. 12b). The value of stress reduction and the extent of the sawtooth regions increase with increasing volume
of the pore space in the material. The intermittent nature of stress–strain curves for high-porosity ceramics is due
to local fracture processes. Each stress reduction is a consequence of the initiation and propagation of a microcrack
in a local field. The subsequent stress growth indicates that in local volumes, the development of microcracks is
impeded due to penetration of the crack mouth into the pore space.

From an analysis of the strain curves for porous ceramics given in Fig. 12b, it follows that their slope during
active loading before the occurrence of nonlinear regions changes depending on the porosity value. The general
form of these curves can be described by the power-law function Y = bXn, where n is the parabolic index. Various
deformation mechanisms determining the shape of the curve are possible, depending on the porosity: 1) purely
elastic strain; in this case, the parabolic index of the strain curve is n = 1; the form of the function corresponds
to Hooke law σ = Eε; 2) inelastic deformation (plasticity); in this case, n < 1; 3) deformation of the sample
due to displacements of local volumes in these porous systems (pressing effect); in this case, n > 1. Generally, a
superposition of all the above-mentioned mechanisms is possible.

The parabolic index can be found by plotting loading curves in double logarithmic coordinates and deter-
mining their slope (Fig. 13). In Fig. 13, it is evident that loading diagrams are converted to several straight-line
segments with various values of n, and the higher the porosity, the larger number of linear segments can be distin-
guished. The indices n determined for most materials turned out to be larger than unity, and for some materials
they reach large values n = 8. The presence of values n > 1 for small degrees of deformation, generally speaking,
is unusual since fracture signs in such cases were not detected. Special metallographic studies of samples were
performed under cyclic loading to small strains (until the occurrence of visible fracture signs). At this stage, the
strain curve are reversible in strain because purely elastic deformation takes place. This is supported by the results
of direct metallographic studies of materials: superimposition of photomicrographs of the structure of a material
before compression loading and after unloading to the relative strain ε = 1.5% shows complete coincidence of the
images. Thus, it can be argued that in the these materials, microfracture does not lead to irreversible displacement
of fragments into the pore space.

An analysis of the strain diagrams shows that the presence of pores of various sizes has a significant effect on
the mechanical behavior of the material. Figure 14 gives all index n in the strain equation measured from the slopes
of the straight-line segments of the curves in Fig. 13 for compression of ceramics with submicropores versus total
porosity. It is evident that the experimental values of n fall on three straight lines and that there is a critical value
of the porosity for which the deformation of the porous solid changes significantly: the exponent of the power-law
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Fig. 14. Parabolic index versus porosity for ZrO2(Y2O3) ceramics with submicron pore size.

Fig. 15. Parabolic index versus porosity for ZrO2(Y2O3) ceramics with macropores: boundaries
of the range of values of n (1 and 2), averaged dependence n(s) obtained for all experimental
points (3).

function becomes much larger than that in the initial state. In this case, the material is actually divided into two
subsystems which are differently deformed under external loading.

Materials with macroporosity have a different form of the dependence of n on porosity: the lower the porosity,
the larger the exponent of the power-law function which decreases exponentially with increasing porosity (Fig. 15).

Simultaneous use of approaches of physical mesomechanics and nonequilibrium thermodynamics al-
lows one to determine the positive effect of nanoporosity on the strength and fracture toughness of brittle
nanostructural ceramics.

CONCLUSIONS

The mechanisms involved in the effect of nanosize inclusions, including nanopores, on the strengthening of
solids are considered by simultaneously using of approaches of mesomechanics and nonequilibrium thermodynamics.
Stress fields near inclusions and pores of various sizes are calculated. It is shown that any nanoinclusions are weak
stress concentrators and cause material strengthening. The strengthening effect of nanopores is most significant for
nanostructural materials.

This work was supported by Project of the Siberian Division of the Russian Academy of Sciences No. 3.6.1.1
and Russian Foundation for Basic Research Grant No. 10-08-01182-p, 09-01-00461).
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8. N. I. Mushelǐsvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen (1953).
9. A. V. Mali and S. J. Singh, Deformation of Elastic Solids, Prentice Hall, New York (1992).

10. I. S. Grigor’ev and B. Z. Meilikhov, Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow
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